If sec x +tan x=k, find the value of sin x
Answers
Answered by
0
Answer:
sin x= OR sin x= (k×cos x)-1
Step-by-step explanation:
We know that 1+tan²x=sec²x
⇒ ∴ sec²x-tan²x=1
⇒ (sec x+tan x)×(sec x-tan x)=1 [∵a²-b²=(a+b)(a-b)]
We know the value of (sec x+tan x) is k
⇒ ∴ (sec x-tan x)=
Adding k and 1/k
⇒ k+=(sec x+tan x)+(sec x-tan x)
⇒ =2 sec x
⇒ ∴ sec x=
We know that cos x=
⇒ ∴ cos x=
⇒ (sec x+tan x) can be written as +
⇒ +=k
⇒ =k
⇒ 1+sin x=k×cos x
Substituting value of (cos x),
⇒ 1+sin x=k×()
⇒ sin x= -1
⇒ sin x=
⇒ ∴ sin x=
OR
⇒ +=k
⇒ =k
⇒ 1+sin x=k×cos x
⇒ ∴ sin x=(k×cos x)-1
PLEASE MARK THIS ANSWER AS BRAINLIEST
Similar questions