If sec x + tan x = p, then find the value of sin x ?
Answers
Answered by
17
so sec x + tan x = p
1 + sin x = p * cos x
square on both sides...
1 + sin^2 x + 2 sin x = p^2 (1 - sin^2 x)
(1+p^2) sin^2 x + 2 sin x +1 - p^2 = 0
Sin x = [ - 1 +- p^2 ] /(1+p^2) = -1 or (p^2 -1)/(p^2+1)
if p =0, sin x = -1
otherwise, sin x = (p^2-1)/(p^2+1)
1 + sin x = p * cos x
square on both sides...
1 + sin^2 x + 2 sin x = p^2 (1 - sin^2 x)
(1+p^2) sin^2 x + 2 sin x +1 - p^2 = 0
Sin x = [ - 1 +- p^2 ] /(1+p^2) = -1 or (p^2 -1)/(p^2+1)
if p =0, sin x = -1
otherwise, sin x = (p^2-1)/(p^2+1)
Similar questions