if secA=(1+4x^2)/4x then cosecA=? and tanA=?
Answers
Answered by
0
secA=x+1/4x
∴, sec²A=(x+1/4x)²
=x²+2.x.1/4x+1/16x²
=x²+1/2+1/16x²
Now, sec²A-tan²A=1
or, tan²A=sec²A-1
or, tan²A=x²+1/2+1/16x²-1
or, tan²A=x²+1/16x²-1/2
or, tan²A=x²-2.x.1/4x+1/16x²
or, tan²A=(x-1/4x)²
or, tanA=+-(x-1/4x)
∴, either, secA+tanA
=x+1/4x+x-1/4x [when tanA=x+1/4x]
=2x
or, secA+tanA
=x+1/4x-x+1/4x [when tanA=-(x+1/4x)]
=1/4x+1/4x
=2/4x
=1/2x (Proved)
If any problem keep a message my account
Gottipatti
Answered by
1
Answer:
Step-by-step explanation:we know. That sec²A-tan²A=1
Tan²A=sec²A-1
Tan²A=(1+4x²)-1=4x²
So tan²A=4x²
TanA=√4x²=2x
So cotA =1/tanA
So cotA=1/2x
We know cose²A-cot²A=1
Cosec²A=1+cot²A
=1+1/(2x)²
=(1+1/4x²)or(4x²+1/4x²)
Similar questions