Math, asked by RosyCherry, 1 month ago

If secA×sinA = 0
then find the value of cos A ​

Answers

Answered by IIDakshII
1

ǫᴜᴇsᴛɪᴏɴ →

If secA×sinA = 0

then find the value of cos A

ᴀɴsᴡᴇʀ →

\longmapsto\tt{secA(sinA) = 0}

\longmapsto\tt{(\dfrac{1}{cosA})(sinA) = 0}

\longmapsto\tt{tanA=0 }

Therefore A is in 1st or 3rd Quadranti.

\longmapsto\tt{A=0  \: Degrees, 180 \:  Degrees....}

\tt\boxed{This  \: yields  \: cosA \: = \: 1  \: or  \: cosA \: = \: -1}

Similar questions