if secA+tanA=p then find the value of cosecA
Answers
Answer:
cosecA=p²+1/p²-1
Step-by-step explanation:
p²+1/p²-1
Step-by-step explanation:
SecA+tanA=p ----------- (1)
⇒ (secA+tanA)×(secA-tanA)=p×(secA-tanA)
⇒ secA²-tanA²=p×(secA-tanA)
⇒ 1=p×(secA-tanA)
⇒ 1/p= (secA-tanA)
⇒ 1/p= (secA-tanA) ------------- (2)
Now, adding from (1) to (2), we get
SecA+tanA+secA-tanA=p+1/p
⇒ 2secA=p²+1/p
⇒ secA=p²+1/2p
Again, subtracting from (1) to (2), we get
SecA+tanA-secA+tanA=p-1/p
⇒ 2tanA= p²-1/p
⇒ tanA= p²-1/2p
Hence, secA=p²+1/2p and tanA= p²-1/2p
We know,
secA/tanA=cosecA=p²+1/2p/p²-1/2p=p²+1/p²-1
So, cosecA=p²+1/p²-1
i hope it will helps you friend
Answer:
Given :
sec A + tan A = p
I am replacing p by ' k '
sec A + tan A = k
We know :
sec A = H / B & tan A = P / B
H / B + P / B = k / 1
H + P / B = k / 1
So , B = 1
H + P = k
P = k - H
From pythagoras theorem :
H² = P² + B²
H² = ( H - k )² + 1
H² = H² + k² - 2 H k + 1
2 H k = k² + 1
H = k² + 1 / 2 k
P = k - H
P = k² - 1 / 2 k
Now write k = p we have :
Base = 1
Perpendicular P = P² - 1 / 2 P
Hypotenuse H = P² + 1 / 2 P
Value of cosec A = H / P
cosec A = P² + 1 / 2 P / P² - 1 / 2 P
cosec A = P² + 1 / P² - 1