If seca +tana=p then find the value of coseca
Answers
1+sina/cosa=p
1+sina=pcosa
1+sina=p(root)(1- sin^2a)
squaring on both side
(1+sina)^2=p^2 (1-sin^2a)
1+2sina+sin^2a=p^2-p^2sin^2a
1+2sina+sin^2a-p^2+p^2sin^2a=0
sin^2 (1+p^2)+2sina+(1-p^2)=0
a=(1+p^2) b=2 c=(1-p^2)
D=b^2-4ac
D= (2)^2-4×(1+p^2)×(1-p^2)
= 4-4(1)^2-(p^2)^2
=4-4+4p^2
D= 4p^2
By quadratic formula,
Answer:
Given :
sec A + tan A = p
I am replacing p by ' k '
sec A + tan A = k
We know :
sec A = H / B & tan A = P / B
H / B + P / B = k / 1
H + P / B = k / 1
So , B = 1
H + P = k
P = k - H
From pythagoras theorem :
H² = P² + B²
H² = ( H - k )² + 1
H² = H² + k² - 2 H k + 1
2 H k = k² + 1
H = k² + 1 / 2 k
P = k - H
P = k² - 1 / 2 k
Now write k = p we have :
Base = 1
Perpendicular P = P² - 1 / 2 P
Hypotenuse H = P² + 1 / 2 P
Value of cosec A = H / P
cosec A = P² + 1 / 2 P / P² - 1 / 2 P
cosec A = P² + 1 / P² - 1