if secA +tanA =p then find the value of sinA interms of p.
Answers
Answered by
108
Hi !
secA + tanA = p - ------>(1)
We know that,
sec²A-tan²A = 1
i.e.,
(a+b) (a-b) = a² - b²
⇒ (secA + tanA)(secA-tanA) = 1
⇒ (secA-tanA) = 1/p ----->(2)
Adding (1) and (2)
we get ,
2 secA = p + 1/p
2tanA = p - 1/p
Now,
2tanA/2secA = sin A
{p - 1/p } / {p + 1/p} = sin A
so,
p² - 1/p² + 1 = sinA
secA + tanA = p - ------>(1)
We know that,
sec²A-tan²A = 1
i.e.,
(a+b) (a-b) = a² - b²
⇒ (secA + tanA)(secA-tanA) = 1
⇒ (secA-tanA) = 1/p ----->(2)
Adding (1) and (2)
we get ,
2 secA = p + 1/p
2tanA = p - 1/p
Now,
2tanA/2secA = sin A
{p - 1/p } / {p + 1/p} = sin A
so,
p² - 1/p² + 1 = sinA
Answered by
7
Answer:
This is your answer... follow me Mark as brainliest..
Step-by-step explanation:
This is best question of trigonometry..
Attachments:
Similar questions