Math, asked by veduhbhatt2003, 1 year ago

if secA - tanA = x, show that secA + tanA = 1/x and hence find the values of cosA and sinA

Answers

Answered by Anonymous
22

\underline{\underline{\mathfrak{\Large{Solution : }}}}



<br /><br />\underline{\textsf{Given,}} \\ \\ \mathsf{\implies sec \: A \: - \: tan \: A \: = \: x \quad...(1) } \\ \\ \underline{\textsf{To Prove :}} \\ \\ \mathsf{\implies sec \: A \: + \: tan \: A \: = \: \dfrac{1}{x}}

\textsf{By Trigonometric Identity , } \\ \\ \mathsf{\implies sec^2 \: A \: - \: tan^2 \: A \: = \: 1 } \\ \\ \mathsf{\implies ( sec \: A \: + \: tan \: A ) ( sec \: A \: - \: tan \: A ) \: = \: 1 } \\ \\<br />\textsf{Plug the value of ( 1 ),} \\  \\  \mathsf{\implies ( sec \: A \: + \: tan \: A)x \: = \: 1 } \\ \\ \mathsf{\therefore \: \:  sec \: A \: + \: tan \: A \: = \: \dfrac{1}{x}} \\ \\ \underline{\underline{ \textsf{Proved !!}}}<br />



\underline{\textsf{Now,}} \\ \\ \mathsf{\implies sec \: A \: - \: tan \: A \: = \: x \quad...(1)} \\ \\ \mathsf{\implies sec \: A \: + \: tan \: A \: = \: \dfrac{1}{x} \quad...(2)}


\textsf{Add both the equations , } \\  \\  \mathsf{ \implies sec \: A \:   -  \:  \cancel{tan \: A} \:  +  \: sec \: A \:   +   \: \cancel{ tan \: A} \: =  \: x \:  +  \:  \dfrac{1}{x} }



\mathsf{\implies 2 sec \: A = \: \dfrac{x^2 \: + \: 1}{x}} \\ \\ \mathsf{\implies sec \: A = \: \dfrac{x^2 \: + \: 1}{2x}} \\ \\ \mathsf{\implies \dfrac{1}{cos \: A } \: = \: \dfrac{x^2 \: + \: 1 }{2x}} \quad  \mathsf{ \left\{ cos \: \theta \: = \: \dfrac{1}{sec \: \theta} \right\}} \\ \\ \mathsf{\therefore \: cos \: A \: = \: \dfrac{2x}{x^2 \: + \: 1 }}


\textsf{Using Trigonometric Identity :} \\ \\ \mathsf{\implies sin \: A \: = \: \sqrt{1 \: - \: cos^2 A}}


\mathsf{\implies sin \: A \: = \: \sqrt{1 \: - \: \left( \dfrac{2x}{x^2 \: + \: 1} \right)^2 }} \\  \\ \mathsf{\implies sin \: A \: = \: \sqrt{1 \:  -  \:  \dfrac{4 {x}^{2} }{ {( {x}^{2} \:  +  \: 1) }^{2} }  } }


\mathsf{\implies sin \: A \: = \: \sqrt{ \dfrac{( {x}^{2} \:  +  \: 1) {}^{2}   \:  -  \: 4 {x}^{2} }{( {x}^{2} \:  +  \: 1)^{2}  }  }} \\  \\  \mathsf{\implies sin \: A \: = \: \sqrt{ \dfrac{ {x}^{4}  \:  +  \: 1 \:  +  \: 2 {x}^{2}  \:  -  \: 4 {x}^{2} }{( {x}^{2} \:  +  \: 1 )^{2} } }}


\mathsf{\implies sin \: A \: = \: \sqrt{ \dfrac{ {x}^{4} \:  +  \: 1 \:   -  \: 2 {x}^{2}  }{( {x}^{2} \:  +  \: 1) ^{2}  } }} \\  \\ \mathsf{\implies sin \: A \: = \: \sqrt{ \dfrac{( {x}^{2}  \:  -  \: 1) {}^{2} }{( {x}^{2} \:  +  \: 1 ) ^{2} } }} \\  \\  \mathsf{\implies sin \: A \: = \: \sqrt{ \left( \frac{ {x}^{2} \:  -  \: 1 }{ {x}^{2} \:  +  \: 1 }  \right) ^{2} }}


\mathsf{ \:  \therefore sin \: A \: = \: \dfrac{ {x}^{2} \:   -  \: 1 }{ {x}^{2} \:  +  \: 1 } }
Answered by ratnadeep58
6

This may be correct...

Attachments:
Similar questions