If secA+tanA=x, then find tan
Answers
Answered by
55
Answer:
Given secA + tanA = x
→ (1) Recall that sec2A − tan2A = 1
⇒ (secA + tanA)(secA − tanA) = 1
⇒x (secA − tanA) = 1
⇒(secA − tanA) = 1/x
→ (2) Subtract (2) from (1), we get (secA + tanA) − (secA − tanA) = x − (1/x)
⇒ secA + tanA − secA + tanA = (x2 − 1)/x
⇒ 2tanA = (x2 − 1)/x
∴ tanA = (x2 − 1)/ 2x
please mark as brainliest
Answered by
25
The answer is (x^2-1)/2x
Attachments:
Similar questions