Math, asked by muskansuhani9, 1 year ago

If secA=x+1/4x, prove that secA+tanA=2x1/2x

Answers

Answered by jarpana2003
1

Answer:

Step-by-step explanation:

secA=x+1/4x

∴, sec²A=(x+1/4x)²

=x²+2.x.1/4x+1/16x²

=x²+1/2+1/16x²

Now, sec²A-tan²A=1

or, tan²A=sec²A-1

or, tan²A=x²+1/2+1/16x²-1

or, tan²A=x²+1/16x²-1/2

or, tan²A=x²-2.x.1/4x+1/16x²

or, tan²A=(x-1/4x)²

or, tanA=+-(x-1/4x)

∴, either, secA+tanA

=x+1/4x+x-1/4x [when tanA=x+1/4x]

=2x  

or, secA+tanA

=x+1/4x-x+1/4x [when tanA=-(x+1/4x)]

=1/4x+1/4x

=2/4x

=1/2x (Proved)


muskansuhani9: I have an dout
jarpana2003: wat doubt
muskansuhani9: tan^2A= x^2+1/16x^2-1/2;tan^2=x^2-2.x.1/4x+1/16x^2. How
muskansuhani9: Well thanks now I understand
Similar questions