if secant theta+tan theta=x then prove that (x²+1) sin theta=x²–1
Answers
Answered by
1
Given:- x=secθ+tanθ
To prove:- x2+1x2−1=sinθ
Proof:-
x=secθ+tanθ
⇒x=cosθ1+sinθ
Squaring both sides, we get
⇒x2=cos2θ(1+sinθ)2
⇒x2=1−sin2θ(1+sinθ)2
⇒x2=(1+sinθ)(1−sinθ)(1+sinθ)2
⇒x2=1−sinθ(1+sinθ)
Therefore,
x2+1x2−1
=1−sinθ(1+sinθ)+11−sinθ(1+sinθ)−1
=1+sinθ+1−sinθ1+sinθ−1+sinθ
=22sinθ=sinθ
Hence proved.
Similar questions