If seco+tan =p, then what is the value of seco-tan ?
Answers
Answered by
1
Answer:
If sec θ+tan θ=p, then how do I show that sin θ=(p^2 - 1)/(p^2 + 1)?
Given that sec A + tan A = p.
Square both sides to get
sec^2 A +2 sec A tan A + tan^2 A = p^2
(1 + tan^2 A) +2 sec A tan A + tan^2 A = p^2, or
tan^2 A +2 sec A tan A + tan^2 A = p^2 - 1, or
2tan^2 A +2 sec A tan A = p^2 - 1, or
2 tan A (tan A + sec A) = p^2 - 1, or
2 tan A*p = p^2 - 1, or
tan A = (p^2 - 1)/2p
Consider a right angled triangle whose altitude is (p^2 - 1) and the base is 2p. The the hypotenuse = [(p^2 - 1)^2 + (2p)^2]^0.5
= [p^4–2p^2+1+4p^2]^0.5
= [p^4+2p^2+1]^0.5
= (p^2+1)
Hence sin A = altitude/hypotenuse = (p^2-1)/(p^2+1).
Proved.
Similar questions