Math, asked by amudha, 1 year ago

if secx- tanx=X.find secx and tanx


831: yours question is not correct
amudha: no it is a correct question
831: we have to prose ure answer
831: *yours

Answers

Answered by 831
0

 sec x dx =  sec x sec x - tan x sec x -  tan x dxset 
  u = sec x -  tan x 
then we find 
  du = (sec x tan x -  sec2 x) dxsubstitute du = (sec x tan x -  sec2 x) dx, u = sec x -  tan x 
 
 sec x sec x - tan x sec x - tan xdx = (sec2 x - sec x tan x) dx sec x  -  tan x =  du usolve integral= ln |u| - Csubstitute back u=sec x - tan x= ln |sec x - tan x| + C 
Answered by Anonymous
0

Answer:

Step-by-step explanation:

 sec x dx =  sec x sec x - tan x sec x -  tan x dxset 

  u = sec x -  tan x 

then we find 

  du = (sec x tan x -  sec2 x) dxsubstitute du = (sec x tan x -  sec2 x) dx, u = sec x -  tan x 

  sec x sec x - tan x sec x - tan xdx = (sec2 x - sec x tan x) dx sec x  -  tan x =  du usolve integral= ln |u| - Csubstitute back u=sec x - tan x= ln |sec x - tan x| + C 

Similar questions