If set A = {x: x² - 7x - 8 = 0), set B = {2, 4), set C = {4, 5, 6) then the value of A x (B intercection C) is equal to
Answers
Answer:
A = {x ∈ R : x2 + 6x – 7 < 0}
⇒ x2 + 6x – 7 < 0
⇒ x2 + 7x - x – 7 < 0
⇒ x (x + 7) – 1 (x + 7) < 0
⇒ (x – 1) (x + 7) < 0
∴ A ∈ (-7, 1)
Now, B = {x ∈ R : x2 + 9x + 14 > 0}
⇒ x2 + 9x + 14 > 0
⇒ x2 + 7x + 2x + 14 > 0
⇒ x (x + 7) + 2(x + 7) > 0
⇒ (x + 7) (x + 2) > 0
Step-by-step explanation:
please make me brain list
Answer:
The value of A x (B intersection C) is equal to { (-1,4), (8,4) } ,
A x (B ∩ C) = { (-1,4), (8,4) }.
Step-by-step explanation:
Given A = {x:x² - 7x - 8 = 0}
x² - 8x + x - 8 = 0
x² - 8x + x - 8 = 0
x ( x - 8 ) + 1 ( x - 8 ) = 0
(x+1)(x-8)=0
x = -1,8.
then the set A = { -1 , 8 } ,
A = { -1 , 8 } , B = { 2, 4} , C = { 4, 5, 6}
A x (B ∩ C)
(B ∩ C) = { 2, 4} ∩ { 4, 5, 6} = {4}
A x (B ∩ C) = { -1 , 8 } x {4} = { (-1,4), (8,4) }
A x (B ∩ C) = { (-1,4), (8,4) }.
therefore the value of A x (B intersection C) = A x (B ∩ C) = { (-1,4), (8,4) }.
Click the below link for more information on sets.
https://brainly.in/question/11395833
https://brainly.in/question/1573443