Math, asked by manish543296, 1 year ago

if show that (x power a+b) power2 (x power b+c) power2 (x power c+a) power2 / (x power a x power b x power c) power 4 =1​

Answers

Answered by Anonymous
31

To prove :

  \frac{{ ({x}^{(a + b)} )}^{2} \times  ( { {x}^{(b + c)}) }^{2}  \times  {( {x}^{(c + a)}) }^{2}  }{   {( { x}^{a} \times  {x}^{b} \times  {x}^{c})   }^{4} } =1

Proof :

lhs =  \frac{{ ({x}^{(a + b)} )}^{2} \times  ( { {x}^{(b + c)}) }^{2}  \times  {( {x}^{(c + a)}) }^{2}  }{   {( { x}^{a} \times  {x}^{b} \times  {x}^{c})   }^{4} }

= \frac{ {x}^{2(a + b)}  \times  {x}^{2(b + c) }  \times  {x}^{2(c + a)} }{( {x}^{4a}  \times  {x}^{4b}  \times  {x}^{4c} )}

 =  \frac{ {x}^{2a + 2b} \times  {x}^{2b + 2c}   \times  {x}^{2c + 2a} }{ {x}^{4a + 4b + 4c} }

 =   \frac{ {x}^{2a + 2b + 2b + 2c + 2c + 2a} }{ {x}^{4a + 4b + 4c} }

 =   \frac{ {x}^{4a + 4b + 4c} }{ {x}^{4a + 4b + 4c} }

 = 1

LHS = RHS

hence proved


Anonymous: Well your answers are too good
Similar questions