Math, asked by babusambit8210, 1 month ago

If simple interest and compound interest of a certain sum of money for two years are RS. 8400 and RS. 8652 ,then find the sum of money and the rate of interest.

Answers

Answered by mddilshad11ab
250

\sf\small\underline{Let:-}

\tt{\implies The\:sum\:of\: money=P}

\tt{\implies The\:rate\:of\: interest=r}

\sf\small\underline{To\: Find:-}

\tt{\implies The\:sum\:and\:rate=?}

\sf\small\underline{Solution:-}

To calculate the sum and rate at first we have to set up equation by applying formula of simple interest and compound interest with the help of given clue.

\rm\large\underline{Calculation\:for\:SI:-}

\tt\small\underline{Sum=P\:\:T=2years\:\:R=r\:\:SI=Rs.8400:-}

\tt{\longrightarrow SI=\dfrac{P*T*R}{100}}

\tt{\longrightarrow 8400=\dfrac{P*2*R}{100}}

\tt{\longrightarrow 2Pr=840000}

\tt{\longrightarrow Pr=420000-----(i)}

\rm\large\underline{Calculation\:for\:CI:-}

\tt\small\underline{Sum=P\:\:T=2years\:\:R=r\:\:CI=Rs.8652:-}

\tt{\longrightarrow CI=P\bigg[1+\dfrac{r}{100}\bigg]^n-P}

\tt{\longrightarrow 8652=P\bigg[1+\dfrac{r}{100}\bigg]^2-P}

\tt{\longrightarrow 8652=P\bigg[\dfrac{100+r}{100}\bigg]^2-P}

\tt{\longrightarrow 8652=P\bigg[\dfrac{10000+200r+r^2}{10000}\bigg]-P}

\tt{\longrightarrow 8652=\dfrac{10000P+200Pr+Pr^2}{10000}-P}

\tt{\longrightarrow 8652=\dfrac{10000P+200Pr+Pr^2-10000P}{10000}}

\tt{\longrightarrow 8652*10000=200Pr+Pr^2}

\tt{\longrightarrow 8652*10000=Pr(200+r)----(ii)}

  • Substituting the value of Pr = 420000 :-]

\tt{\longrightarrow 8652*10000=420000(200+r)}

\tt{\longrightarrow 8652=42(200+r)}

\tt{\longrightarrow (200+r)=8652\div\:42}

\tt{\longrightarrow 200+r=206}

\tt{\longrightarrow r=206-200}

\tt{\longrightarrow r=6\%}

  • Putting the value of r=6 in eq (i):-]

\tt{\longrightarrow Pr=420000}

\tt{\longrightarrow P(6)=420000}

\tt{\longrightarrow P=70000}

\sf\large{Hence,}

\tt\red{\implies The\:sum\:of\: money=Rs.70000}

\tt\blue{\implies The\:rate\:of\: interest=6\%}

Answered by MяMαgıcıαη
119

\LARGE\boxed{\textsf{\textbf{\pink{Given\::-}}}}

\:

  • Simple interest and compound interest of a certain sum of money for two years are Rs. 8400 and Rs. 8652.

\:

\LARGE\boxed{\textsf{\textbf{\green{To\:Find\::-}}}}

\:

  • Sum of money and rate of interest?

\:

\LARGE\boxed{\textsf{\textbf{\blue{Solution\::-}}}}

\:

\underline{\sf{\bigstar\:Formulae\:used\::-}}

\:

\quad\odot\:{\underline{\boxed{\bf{\red{S.I = \dfrac{P\:\times\:R\:\times\:T}{100}}}}}}

\:

\quad\odot\:{\underline{\boxed{\bf{\purple{C.I = {P\bigg(1 + \dfrac{R}{100}\bigg)}^{T} - P}}}}}

\:

Where,

\:

  • P = Principal (sum of money)

  • R = Rate of interest

  • T = Time

  • S.I = Simple interest

  • C.I = Compound interest

\:

━━━━━━━━━━━━━━━━━━━━━━━━━

\:

  • Let sum of money be P

  • And rate of interest be R

\:

━━━━━━━━━━━━━━━━━━━━━━━━━

\:

\underline{\sf{\bigstar\:According\:to\:the\:given\:Question\::-}}

\\ \longrightarrow \:\sf S.I = 8400

\\ \longrightarrow \:\sf \dfrac{P\:\times\:R\:\times\:T}{100} = 8400

\\ \longrightarrow \:\sf \dfrac{P\:\times\:R\:\times\:2}{100} = 8400

\\ \longrightarrow \:\sf \dfrac{\cancel{2}PR}{\cancel{100}} = 8400

\\ \longrightarrow \:\sf \dfrac{PR}{50} = 8400

\\ \longrightarrow \:\sf PR = 8400\:\times\:50

\\ \longrightarrow \:\sf PR = 420000 \:\dashrightarrow\:(1)

\:

Now,

\\ \longrightarrow \:\sf C.I = 8652

\\ \longrightarrow \:\sf {P\bigg(1 + \dfrac{R}{100}\bigg)}^{T} - P = 8652

\\ \longrightarrow \:\sf {P(1 + 0.01R)}^{2} - P = 8652

\:

Using identity, (a + b)² = a² + b² + 2ab on (1 + 0.01R)² ::

\\ \longrightarrow \:\sf P[(1)^2 + (0.01R)^2 + 2(1)(0.01R)] - P = 8652

\\ \longrightarrow \:\sf P(1 + 0.0001R^2 + 0.02R - P = 8652

\\ \longrightarrow \:\sf \cancel{P} + 0.0001PR^2 + 0.02PR - \cancel{P} = 8652

\\ \longrightarrow \:\sf 0.0001(PR)R + 0.02PR = 8652

\:

Putting value of PR from (1) ::

\\ \longrightarrow \:\sf 0.0001(420000)R + 0.02(420000) = 8652

\\ \longrightarrow \:\sf 42R + 8400 = 8652

\\ \longrightarrow \:\sf 42R = 8652 - 8400

\\ \longrightarrow \:\sf 42R = 252

\\ \longrightarrow \:\sf R = {\cancel{\dfrac{252}{42}}}

\\ \longrightarrow \:\bf \orange{R = 6}

\:

  • Therefore, Rate of interest is 6 % per annum.

\:

Putting value of R in (1) ::

\\ \longrightarrow \:\sf P(6) = 420000

\\ \longrightarrow \:\sf P = {\cancel{\dfrac{420000}{6}}}

\\ \longrightarrow \:\bf\orange{ P = 70000}

\:

  • Therefore, sum of money is Rs. 70,000.

\:

━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions