If sin 0 + cos 0 =3, then prove that tan 0+ cot=1
Answers
Answer:
Step-by-step explanation:
(Sin 0 + Cos 0)² = 3²
Sin²0 + Cos²0 + 2Sin0Cos0 = 9
But,
{Sin²0+Cos²0=1}
So,
1+2Sin0Cos0 = 9
2Sin0Cos0 = 8
Sin0Cos0 = 8/2 = 4
To Prove :-
Tan0 + Cot0 = 1
Substituting values
Step-by-step explanation:
Step-by-step explanation:(Sin0 + Cos0)^2 = 3^2
Step-by-step explanation:(Sin0 + Cos0)^2 = 3^2Sin^2-0 + Cos^2-0 + 2sin0cos0 = 9
Step-by-step explanation:(Sin0 + Cos0)^2 = 3^2Sin^2-0 + Cos^2-0 + 2sin0cos0 = 92sin0cos0 = 3-1 = 2
Step-by-step explanation:(Sin0 + Cos0)^2 = 3^2Sin^2-0 + Cos^2-0 + 2sin0cos0 = 92sin0cos0 = 3-1 = 2Sin0cos0 = 2/2 = 1
Step-by-step explanation:(Sin0 + Cos0)^2 = 3^2Sin^2-0 + Cos^2-0 + 2sin0cos0 = 92sin0cos0 = 3-1 = 2Sin0cos0 = 2/2 = 1NOW,
Step-by-step explanation:(Sin0 + Cos0)^2 = 3^2Sin^2-0 + Cos^2-0 + 2sin0cos0 = 92sin0cos0 = 3-1 = 2Sin0cos0 = 2/2 = 1NOW,tan0 + cot 0
Step-by-step explanation:(Sin0 + Cos0)^2 = 3^2Sin^2-0 + Cos^2-0 + 2sin0cos0 = 92sin0cos0 = 3-1 = 2Sin0cos0 = 2/2 = 1NOW,tan0 + cot 0= Sin0/cos0 + cos0/sin0
Step-by-step explanation:(Sin0 + Cos0)^2 = 3^2Sin^2-0 + Cos^2-0 + 2sin0cos0 = 92sin0cos0 = 3-1 = 2Sin0cos0 = 2/2 = 1NOW,tan0 + cot 0= Sin0/cos0 + cos0/sin0= Sin^2-0 + cos^2-0/ sin0cos0
Step-by-step explanation:(Sin0 + Cos0)^2 = 3^2Sin^2-0 + Cos^2-0 + 2sin0cos0 = 92sin0cos0 = 3-1 = 2Sin0cos0 = 2/2 = 1NOW,tan0 + cot 0= Sin0/cos0 + cos0/sin0= Sin^2-0 + cos^2-0/ sin0cos0= 1/1 = 1.