Math, asked by kahan99, 3 months ago

If sin 0+ cos0= m then value of (sino - cos) is

Answers

Answered by Anonymous
0

Answer:

sinѲ - cosѲ = \sqrt{m^{2}+2 }

Step-by-step explanation:

sinѲ+cosѲ=m ----(1)

lets consider: sin0-cos0=n ------(2)

square the 1st equation:   sin^{2}Ѳ + cos^{2}Ѳ + 2sinѲcosѲ = m^{2} -----(3)

square the 2nd equation:   sin^{2}Ѳ + cos^{2}Ѳ - 2sinѲcosѲ = n^{2}  ------(4)

Add 3rd and 4th equation:

                                       = sin^{2}Ѳ+cos^{2}Ѳ+sin^{2}Ѳ+cos^{2}Ѳ=n^{2}+m^{2}

                                    Since  sin^{2}Ѳ+cos^{2}Ѳ=1

                             ===>           1 + 1 =  n^{2} +m^{2}

                             ===>          2 = n^{2} +m^{2}

                             ===>           n^{2} = m^{2}  +2

                             ===>            n = \sqrt{m^{2}+2 }

                             since          sinѲ - cosѲ = n

                             Therefore   sinѲ - cosѲ = \sqrt{m^{2}+2 }

Similar questions