If sin^-1 = x then find tan A.
Please solve this.
Answers
Answered by
0
1/sin=x (m^-1 = 1/m)
cosec =x
therefore, sin = 1/x
we know that sin^2 + cos^2 =1
(1/x)^2 + cos^2=1
cos^2= 1-1/x^2
cos^2=x^2-1/x^2
cos =√x^2 -1/x
now tan A = sinA / cosA
=(√x^2 -1)x/x
=(√x^2 -1)Ans.☺️☺️☺️
cosec =x
therefore, sin = 1/x
we know that sin^2 + cos^2 =1
(1/x)^2 + cos^2=1
cos^2= 1-1/x^2
cos^2=x^2-1/x^2
cos =√x^2 -1/x
now tan A = sinA / cosA
=(√x^2 -1)x/x
=(√x^2 -1)Ans.☺️☺️☺️
Answered by
0
sin^-1=×
1/sin =x
sin=p/h=1/x
b^2=h^2-p^2
=×^2-1^2
b=√x^2-1
tan A=p/b
=1/(√x^2-1)
1/sin =x
sin=p/h=1/x
b^2=h^2-p^2
=×^2-1^2
b=√x^2-1
tan A=p/b
=1/(√x^2-1)
Similar questions