Math, asked by arpitin1999, 10 months ago

if sin-¹x -cos-¹x =π/6, the x is equal to​

Answers

Answered by ksonakshi70
2

Answer:

 { \sin(x) }^{ - 1}  -  { \cos(x) }^{ - 1}  =  \frac{\pi}{6}  \\  { \sin(x) }^{ - 1}  =  \frac{\pi}{6}   +  { \cos(x) }^{ - 1}   \\ { \sin(x) }^{ - 1}  =  \frac{\pi}{6}   + ( \frac{\pi}{2}  -  { \sin(x) }^{ - 1} ) \\  =  \frac{\pi}{6}  +  \frac{\pi}{2}  -  { \sin(x) }^{ - 1}  \\ 2 { \sin(x) }^{ - 1}  =  \frac{\pi + 3\pi}{6}  \\ 2 { \sin(x) }^{ - 1}  =  \frac{4\pi}{6}  \\ 2 { \sin(x) }^{ - 1}  =  \frac{2\pi}{3}  \\  { \sin(x) }^{ - 1}  =  \frac{\pi}{3}  \\ x =    \frac{ \sqrt{3} }{2}

Similar questions