If sin⁻¹x+sin⁻¹y+sin⁻¹z= π, then prov that x√1-x²+ y√1-y²+z√1-z²=2xyz
Answers
Answer:
x[√(1 - x²)]+ y[√(1 - y²)]+z[√(1 - z²)] = 2xyz
Step-by-step explanation:
sin⁻¹x+sin⁻¹y+sin⁻¹z= π
sin⁻¹x = A =>x = sinA => √(1 - x²) = CosA
sin⁻¹y = B => y = sinB => √(1 - y²) = CosB
sin⁻¹z = C => z = sinC => √(1 - z²) = CosC
A + B + C = π
to be proved
x[√(1 - x²)]+ y[√(1 - y²)]+z[√(1 - z²)] = 2xyz
sinAcosA + sinBcosB +sinCcosC = 2sinAsinBsinC
multiplying by 2 both sides
2sinAcosA + 2sinBcosB +2sinCcosC = 4sinAsinBsinC
sin2A + sin2B + sin2C = 4sinAsinBsinC.
LHS
= sin2A + sin2B + sin2C
= 2sin(A + B)cos(A - B) + sin[2π- 2A - 2B]
= 2sin(A + B)cos(A - B) - sin(2A + 2B)
= 2sin(A + B)cos(A - B) - 2sin(A + B)cos(A + B)
= 2sin(A + B)[cos(A - B) - cos(A + B)]
= 2sin(A + B)⋅2[(-1)(-1) sinAsinB]
= 4sin(π - C)⋅sinAsinB
= 4sinAsinBsinC
=RHS