Math, asked by achaldoshi23, 1 year ago

If sin^2 theta + 1 = 3 sin theta cos theta
Then prove
Tan theta = 1 or 1/2

Answers

Answered by Anonymous
1

Answer:

Given: 1 + Sin²Ф = 3 SinФ. CosФ

Using the formula: Sin²Ф + Cos²Ф = 1, we get,

⇒ ( Sin²Ф + Cos²Ф ) + Sin²Ф = 3 SinФ. CosФ

⇒ Cos²Ф + 2Sin²Ф = 3 SinФ. CosФ

Dividing both sides by Cos²Ф, we get,

⇒ 1 + 2 ( Sin²Ф / Cos²Ф ) = 3 SinФ. Cos²Ф / CosФ

Cos²Ф / CosФ will become 1 / CosФ which on multiplied by SinФ becomes SinФ / CosФ which is TanФ.

⇒ 1 + 2 Tan²Ф = 3 TanФ

Transposing 3 TanФ this side we get,

⇒ 2 Tan²Ф - 3 TanФ + 1 = 0

For sake of simplicity, let us take TanФ as 'x'

⇒ 2x² - 3x + 1 = 0

Solving the equation we get,

⇒ 2x² - 2x - x + 1 = 0

⇒ 2x ( x - 1 ) -1 ( x - 1 ) = 0

⇒ ( 2x - 1 ) ( x - 1 ) = 0

⇒ 2x = 1 , x = 1 / 2

⇒ x = 1

Hence the values of x are ( 1/2, 1 )

Hence Tan Ф values are ( 1/2, 1 )

Hence Proved !

Answered by unsungwriter
23

YOUR ANSWERS IS IN THE ATTACHMENT....

EXPLANATION:-

FIRSTLY WE WILL DIVIDE BOTH LHS AND RHS BY COS^2 THETA.

Attachments:
Similar questions