If sin^2 theta + 1 = 3 sin theta cos theta
Then prove
Tan theta = 1 or 1/2
Answers
Answer:
Given: 1 + Sin²Ф = 3 SinФ. CosФ
Using the formula: Sin²Ф + Cos²Ф = 1, we get,
⇒ ( Sin²Ф + Cos²Ф ) + Sin²Ф = 3 SinФ. CosФ
⇒ Cos²Ф + 2Sin²Ф = 3 SinФ. CosФ
Dividing both sides by Cos²Ф, we get,
⇒ 1 + 2 ( Sin²Ф / Cos²Ф ) = 3 SinФ. Cos²Ф / CosФ
Cos²Ф / CosФ will become 1 / CosФ which on multiplied by SinФ becomes SinФ / CosФ which is TanФ.
⇒ 1 + 2 Tan²Ф = 3 TanФ
Transposing 3 TanФ this side we get,
⇒ 2 Tan²Ф - 3 TanФ + 1 = 0
For sake of simplicity, let us take TanФ as 'x'
⇒ 2x² - 3x + 1 = 0
Solving the equation we get,
⇒ 2x² - 2x - x + 1 = 0
⇒ 2x ( x - 1 ) -1 ( x - 1 ) = 0
⇒ ( 2x - 1 ) ( x - 1 ) = 0
⇒ 2x = 1 , x = 1 / 2
⇒ x = 1
Hence the values of x are ( 1/2, 1 )
Hence Tan Ф values are ( 1/2, 1 )
Hence Proved !
YOUR ANSWERS IS IN THE ATTACHMENT....
EXPLANATION:-
FIRSTLY WE WILL DIVIDE BOTH LHS AND RHS BY COS^2 THETA.