If sin^2 (x) + cos^4 (x) = 13/16, then general solution for x is ?
Answers
If sin²x + cos⁴x = 13/16 , then general solution for x is ?
solution : sin²x + cos⁴x = 13/16
⇒1 - cos²x + cos⁴x = 13/16
⇒cos⁴x - cos²x + 1 = 13/16
⇒16cos⁴x - 16cos²x + 16 = 13
⇒16cos⁴x - 16cos²x + 3 = 0
let cos²x = t
⇒16t² - 16t + 3 = 0
⇒t = {16 ± √(16² - 4 × 16 × 3)}/32
= {16 ± 8)/32
= 1/4, 3/4
so, cos²x = 1/4 , 3/4
for cos²x = 1/4
⇒(cosx)² = (1/2)² = (cosπ/3)²
x = nπ ± (π/3)
for cos²x = 3/4
⇒(cosx)² = (√3/2)² = (cosπ/6)²
x = nπ ± (π/6)
[note : cos²x = cos²α then, x = nπ ± α ]
Therefore the general solutions of given trigonometric equation are ; nπ ± (π/3), nπ ± (π/6)
Given,
sin²x + cos⁴x = 13/16
To Find:-
General solution of "X"
Calculations:-
sin²x + cos⁴x = 13/16
We know that,
sin²x = 1 - cos²x
⇒1 - cos²x + cos⁴x = 13/16
⇒cos⁴x - cos²x + 1 = 13/16
⇒16cos⁴x - 16cos²x + 16 = 13
⇒16cos⁴x - 16cos²x + 3 = 0
Now,
cos²x = y
16y² - 16y+ 3 = 0
=y = {16 ± √(16² - 4 × 16 × 3)}/32
= {16 ± 8)/32
= 1/4, 3/4
so, cos²x = 1/4 , 3/4
for cos²x = 1/4
⇒(cosx)² = (1/2)² = (cosπ/3)²
x = nπ ± (π/3)
for cos²x = 3/4
⇒(cosx)² = (√3/2)² = (cosπ/6)²
x = nπ ± (π/6)