IF sin 2A = cos ( A-30* ) where 2A is an acute angle. Find the value of A .
Answers
Answer:
45°
Step-by-step explanation:
sin 2A=cos(A-30°)
=>cos(90°-2A)=cos(A-30°)
now , 90-2A=A-30
=>90+30=3A
=>120=3A
A=120/3=45......so A =45°
The value of A = 40°
Given :
sin 2A = cos ( A - 30° ) where 2A is an acute angle
To find :
The value of A
Solution :
Step 1 of 2 :
Write down the given equation
Here it is given that
sin 2A = cos ( A - 30° ) where 2A is an acute angle
Step 2 of 2 :
Find the angle A
sin 2A = cos ( A - 30° )
⇒ cos ( 90° - 2A ) = cos ( A - 30° )
⇒ ( 90° - 2A ) = ( A - 30° )
⇒ - 2A - A = - 30° - 90°
⇒ - 3A = - 120°
⇒ A = 40°
Hence the value of A = 40°
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
If cosθ+secθ=√2,find the value of cos²θ+sec²θ
https://brainly.in/question/25478419
2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to
https://brainly.in/question/17024513
3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2
https://brainly.in/question/19793971