If sin θ = 3/5 , find the values of other trigonometric identities.
Answers
Answered by
22
sin theta =3/5
P=3
H=5
B=root H^2-P^2
B=root5^2-3^2
B=root25-9
B=root 16
B=4
cos=4/5
tan=3/4
cosec=5/3
sec=5/4
cot=4/3
I hope it will help you
P=3
H=5
B=root H^2-P^2
B=root5^2-3^2
B=root25-9
B=root 16
B=4
cos=4/5
tan=3/4
cosec=5/3
sec=5/4
cot=4/3
I hope it will help you
Answered by
12
Given,
sin θ = 3/5
To find,
The values of other trigonometric identities.
Solution,
- sin θ = 3/5.
We know that cos²θ = 1-sin²θ
⇒ cos²θ= 1-(3/5)²
⇒ cos²θ = 1 - (9/25)
⇒ cos²θ = (25-9)/25
⇒ cos²θ = 16/25.
- cos θ = 4/5.
⇒ tan θ = (sin θ)/ (cos θ)
⇒ tan θ = (3/5) / (4/5)
- tan θ = 3/4.
- cosec θ is reciprocal of sin θ , therefore cosec θ = 5/3.
- sec θ is reciprocal of cos θ , therefore sec θ = 5/4.
- cot θ is reciprocal of tan θ , therefore tan θ = 4/3.
Hence, sin θ = 3/5, cos θ = 4/5, tan θ = 3/4, cosec θ = 5/3, sec θ = 5/4, tan θ = 4/3.
Similar questions