Math, asked by sachinpatil4459, 10 months ago

If sin θ = √3 cos θ, then find the values of cos θ and sin θ.

Answers

Answered by ToxicEgo
0

Answer:

since we know that ,

sin² theta + cos² theta= 1

therefore+√3cos theta) ²+cos² theta=1

3cos²theta+cos² theta=1

4cos² theta=1

cos²theta=1/4

cos theta=1/2

therefore sin² theta + cos² theta=1

sin²theta+(1/2) ²=1

sin² theta+1/4=1

sin² theta=1-1/4

sin² theta=3/4

sin theta=√3/2

Answered by jaswasri2006
1

√3 sin θ = cos θ

cos θ / sin θ = √3

cot θ = √3

cot θ = cot 30°

θ = 30°

then ,

  • sin 30° = ½
  • cos 30° = 1/√2
Similar questions