If tan θ = 5/12, then find the value of cos θ.
Answers
Answer:
A)wkt, tanx = perpendicular(p)/base(b) .....(1)
B)We are given tanx=5/12 .....(2)
C)On comparing the quantities we get that p=5 and b=12
D)We require the value of hypotenuse(h),
for this we apply the Pythagoras theorum i.e,
h
2
=
p
2
+
b
2
⇒
h
2
=
5
2
+
12
2
⇒
h
2
=25+144
⇒
h
2
=169
⇒
h=
√
169
⇒
h=13
..............................................................................................................
Hence , sinx = perpendicular/hypotenuse=p/h = 5/13
cosx = base/hypotenuse=b/h = **12/13* .... *(Answer)
.............................................................................................................
Answer:
Opposite side=5
Adjacent side=12
Hypotenuse=?
By using triangle diagram
By using pythagorean rule,
5^2+12^2=(Hypotenuse)^2
25+144=(hypotenuse)^2
(Hypotenuse)^2=169
Hypotenuse=13