Math, asked by Hansika7715, 11 months ago

If tan θ = 5/12, then find the value of cos θ.

Answers

Answered by SwaggerGabru
0

Answer:

A)wkt, tanx = perpendicular(p)/base(b) .....(1)

B)We are given tanx=5/12 .....(2)

C)On comparing the quantities we get that p=5 and b=12

D)We require the value of hypotenuse(h),

for this we apply the Pythagoras theorum i.e,

h

2

=

p

2

+

b

2

h

2

=

5

2

+

12

2

h

2

=25+144

h

2

=169

h=

169

h=13

..............................................................................................................

Hence , sinx = perpendicular/hypotenuse=p/h = 5/13

cosx = base/hypotenuse=b/h = **12/13* .... *(Answer)

.............................................................................................................

Answered by Anonymous
5

Answer:

 \tan \alpha  = 5 \div 12 \\

Opposite side=5

Adjacent side=12

Hypotenuse=?

By using triangle diagram

By using pythagorean rule,

5^2+12^2=(Hypotenuse)^2

25+144=(hypotenuse)^2

(Hypotenuse)^2=169

Hypotenuse=13

 \cos\alpha  = ad \div hypo \\  =  >  \cos \alpha  = 12 \div 13

Similar questions