If sin 30° + cos 45° = X, then the value of X.
A) (2√2-√3)/2 B) 4/√3 C) (1-√3)/√3 D) (1+√2)/2
Answers
Answered by
7
Given :
- sin30° + cos45° = X
To find :
- Value of X.
Solution :
sin30° + cos45° = X
→ 1/2 + 1/√2 = X
→( √2 + 2 )/ 2√2 = X
→ (√2+2)2√2 / 2√2 × 2√2 = X
→ (4+4√2)/8 = X
→ 4(1+√2)/8 = X
→ (1+√2)/2 = X
Therefore, option (D) (1+√2)/2 is correct.
_____________________
Some values :-
- sin30° = 1/2
- sin45° = 1/√2
- sin60° = √3/2
- cos30° = √3/2
- cos45° = 1/√2
- cos60° = 1/2
- tan30° = 1/√3
- tan45° = 1
- tan60° = √3
Some formulas :-
★ sin²A + cos²A = 1
★ 1 + tan²A = sec²A
★ 1 + cot²A = cosec²A
★ cos²A - sin²A = cos2A
Similar questions