If sin 3A = cos (A - 6) where 3A and (A - 6) are acute angles, Find the value of A.
Answers
Answered by
18
Heyy mate ❤✌✌❤
Here's your Answer...
⤵️⤵️⤵️⤵️⤵️
Sin 3A = Cos ( A - 6)
Sin 3A = Sin [ 90 - ( A-6)]
3A = 90 - A + 6
4A = 96
A = 24.
✔✔✔✔
Here's your Answer...
⤵️⤵️⤵️⤵️⤵️
Sin 3A = Cos ( A - 6)
Sin 3A = Sin [ 90 - ( A-6)]
3A = 90 - A + 6
4A = 96
A = 24.
✔✔✔✔
AJThe123456:
please mark it as brainliest
Answered by
7
✨✨❤️hey mate ❤️✨✨
❤️❤️here is your answer ❤️❤️
SinA = cos(A - 6) where 3A and (A - 6).are acute angle.
Find the value of A =??
Hence:-
Sin3A= cos(A- 6)
✨✨we can write Sin3A as :-
✨✨❤️cos(90- 3A) ✨✨❤️❤️
Then put:-
Cos(90- 3A) = cos(A- 6)
✨ (90- 3A) = (A- 6)
90 +6 =A+ 3A
✨ 96 = 4A
✨ A= 96/4
❤️ A = 24✨✨
Hope u like the ans.. Plse Mark me as brainlist
❤️❤️here is your answer ❤️❤️
SinA = cos(A - 6) where 3A and (A - 6).are acute angle.
Find the value of A =??
Hence:-
Sin3A= cos(A- 6)
✨✨we can write Sin3A as :-
✨✨❤️cos(90- 3A) ✨✨❤️❤️
Then put:-
Cos(90- 3A) = cos(A- 6)
✨ (90- 3A) = (A- 6)
90 +6 =A+ 3A
✨ 96 = 4A
✨ A= 96/4
❤️ A = 24✨✨
Hope u like the ans.. Plse Mark me as brainlist
Similar questions