Math, asked by gopalread, 11 months ago

if sin^4a-cos^4a=b^4 then sin^2a-cos^2a is what?

Answers

Answered by jgdevipriya200154
0

Answer:

sin ^4a +- cos ^ 4 a =b^4 sin ^2 a - cos ^ 2a

Answered by Sharad001
41

Question :-

 \rm \: if \:  { \sin}^{4} a  -  { \cos}^{4} a =  {b}^{4}  \: then \: what \: is \: the \: value  \\ \rm \: of \:  \:  { \sin}^{2} a -  { \cos}^{2} a \: .

Answer :-

\to \boxed{ \rm \: { \sin}^{2} a -  { \cos}^{2} a =  {b}^{4} } \:  \\

To Find :-

 \mapsto \rm  { \sin}^{2} a -  { \cos}^{2} a \\

Used Identity :-

  \boxed{\to}  \:   \rm {x}^{2}  -  {y}^{2}  = (x + y)(x - y) \\  \\  \boxed{  \to} \: \:   { \sin}^{2}  \theta +  { \cos}^{2}  \theta = 1

Solution :-

According to the question,

 \to \rm{ \sin}^{4} a  -  { \cos}^{4} a =  {b}^{4}  \: \:  \\  \\  \bf \: we \: can \: write \: it \:  \\  \\  \to \rm  { \{ { \sin}^{2}a \} }^{2}  -  { { \{ \cos}^{2}a \} }^{2}   =  {b}^{4} \\ \:  \:  \:  \:  \:  \:  \:  \:  \boxed{  \because \bf {x}^{2}  -  {y}^{2}  = (x - y)(x + y)} \\  \therefore \\  \to \rm  \big \{ { \sin}^{2} a +  { \cos}^{2} a \big \} \big \{ { \sin}^{2} a -  { \cos}^{2} a \big \} =  {b}^{4}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \because \:  { \sin}^{2}  \theta +  { \cos}^{2}  \theta = 1}  \\  \therefore \:  \\  \to \boxed{ \rm \: { \sin}^{2} a -  { \cos}^{2} a =  {b}^{4} }

Some Important Formula :-

Trigonometric identities:-

 \mapsto \: \sin 2\theta = 2 \sin \theta \: \cos \theta \\ \\ \mapsto \cos2\theta = 1 - 2 \sin^{2} \theta \\ \\ \mapsto \cos 2\theta = 2\cos^{2}\theta -1 \\ \\ \mapsto \cos2\theta = \cos^{2} \theta - \sin^{2} \theta \\ \\ \mapsto \sec^{2} \theta - \tan^{2} \theta = 1 \\ \\ \mapsto \csc^{2} \theta - \cot^{2} \theta = 1

Similar questions