Math, asked by vanshgupta108vp85967, 1 year ago

if sin^4A+sin^2 A=1, prove that 1/tan^4A+1/tan^2 A=1

Answers

Answered by Arceus11
1
Here is your answer in the pic.
Attachments:
Answered by kasyapanand7
1
Given that
     sin⁴A+sin²A=1
=>  sin⁴A=1-sin²A
=>  sin⁴A=cos²A                             [1-sin²A=cos²A]
=>  sin⁴A=cos²A        .....................(equation i  )              
=> sin²A*sin²A=cos²A
=> sin²A=cos²A/sin²A
=> sin²A=cot²A                               [cos²A/sin²A=cot²A]
=> sin²A=1/tan²A                            [ cotA=1/tanA]
=> sin²A=1/tan²A     .......................( equation ii )
Now,
  Multiplying cos2A on both sides in equation i,
=>  sin⁴A*cos²A=cos²A*cos²A
=>  sin⁴Acos²A=cos⁴A
=>  cos²A=cos⁴A/sin⁴A
=>  cos²A=cot⁴A                             [ Since, cos²A/sin²A=cot²A]
=>  cos²A=1/tan⁴A                         [ Since, cot²A=1/tan²A ]
=>  cos²A=1/tan⁴A      ....................( equation iii )
Adding equation (ii) and (iii),
                                   sin²A=1/tan²A
  (+)                cos²A            =              1/tan⁴A
                  --------------------------------------------------
                     cos²A+sin²A=1/tan²A+1/tan⁴A
              =>  1/tan²A+1/tan⁴A=cos²A+sin²A
              =>  1/tan²A+1/tan⁴A=1                                 [ Since, cos²A+sin²A=1 ]
              =>  1/tan²A+1/tan⁴A=1                                 [Proved]

vanshgupta108vp85967: very confusing
Similar questions