If sin 5A = cos 4 A, then 2 sin 3 A - √3cos3A
Answers
32sinA/2.sin5A/2
32sinA/2.sin5A/2 use formula ,
32sinA/2.sin5A/2 use formula ,2sinA.sinB = cos(A -B) -cos(A+B)
32sinA/2.sin5A/2 use formula ,2sinA.sinB = cos(A -B) -cos(A+B) cos2A = 2cos²A -1
32sinA/2.sin5A/2 use formula ,2sinA.sinB = cos(A -B) -cos(A+B) cos2A = 2cos²A -1cos3A = 4cos³A -3cosA
32sinA/2.sin5A/2 use formula ,2sinA.sinB = cos(A -B) -cos(A+B) cos2A = 2cos²A -1cos3A = 4cos³A -3cosA now,
32sinA/2.sin5A/2 use formula ,2sinA.sinB = cos(A -B) -cos(A+B) cos2A = 2cos²A -1cos3A = 4cos³A -3cosA now, 32sinA/2sin5A/2 = 16cos2A -16cos3A
32sinA/2.sin5A/2 use formula ,2sinA.sinB = cos(A -B) -cos(A+B) cos2A = 2cos²A -1cos3A = 4cos³A -3cosA now, 32sinA/2sin5A/2 = 16cos2A -16cos3A16{ 2cos²A -1 -4cos³A+3cosA}
32sinA/2.sin5A/2 use formula ,2sinA.sinB = cos(A -B) -cos(A+B) cos2A = 2cos²A -1cos3A = 4cos³A -3cosA now, 32sinA/2sin5A/2 = 16cos2A -16cos3A16{ 2cos²A -1 -4cos³A+3cosA} =16{ 2(3/4)²-1-4(3/4)³+3(3/4)}
32sinA/2.sin5A/2 use formula ,2sinA.sinB = cos(A -B) -cos(A+B) cos2A = 2cos²A -1cos3A = 4cos³A -3cosA now, 32sinA/2sin5A/2 = 16cos2A -16cos3A16{ 2cos²A -1 -4cos³A+3cosA} =16{ 2(3/4)²-1-4(3/4)³+3(3/4)} =16{ 18/16 -1 -27/16 +36/16}
32sinA/2.sin5A/2 use formula ,2sinA.sinB = cos(A -B) -cos(A+B) cos2A = 2cos²A -1cos3A = 4cos³A -3cosA now, 32sinA/2sin5A/2 = 16cos2A -16cos3A16{ 2cos²A -1 -4cos³A+3cosA} =16{ 2(3/4)²-1-4(3/4)³+3(3/4)} =16{ 18/16 -1 -27/16 +36/16}=( 18 -16 -27 +36}
32sinA/2.sin5A/2 use formula ,2sinA.sinB = cos(A -B) -cos(A+B) cos2A = 2cos²A -1cos3A = 4cos³A -3cosA now, 32sinA/2sin5A/2 = 16cos2A -16cos3A16{ 2cos²A -1 -4cos³A+3cosA} =16{ 2(3/4)²-1-4(3/4)³+3(3/4)} =16{ 18/16 -1 -27/16 +36/16}=( 18 -16 -27 +36}=11
by BRAINLY
Answer:
32sinA/2.sin5A/2
use formula ,
2sinA.sinB = cos(A -B) -cos(A+B)
cos2A = 2cos²A -1
cos3A = 4cos³A -3cosA
now,
32sinA/2sin5A/2 = 16cos2A -16cos3A
16{ 2cos²A -1 -4cos³A+3cosA}
=16{ 2(3/4)²-1-4(3/4)³+3(3/4)}
=16{ 18/16 -1 -27/16 +36/16}
=( 18 -16 -27 +36}
=11
It might help you
it was VERY hard for me as I have solved this type of question after a long time when I was studying .
❤❤❤❤