Math, asked by shrutikumarifbg7660, 11 months ago

If sin^8x+cos^8x-1=0 then what is the value of cos^2x(sin^2x)

Answers

Answered by ArjunPartha
1

Step-by-step explanation:

First you (Sin^2x+Cos^2x)^4=Sin^8x+Cos^8x+ 6 sin^4x.Cos^4x+4 Sin^6x.Cos ^2x+ 4 Cos^4x.Sin^2x

but sin8x+cos8x=1 LHS=1

so You can have this FINALLY

3 Sin^2x.Cos^2x+2 Sin^4x+2Cos^4x=0

2sin^2x(sin2^x+cos^2x)+Cos^2x(2sin^2x+Cos^2x)

then Subject that.you will have -1

Answered by lublana
3

The value of cos^2xsin^2x are 0 and 2.

Step-by-step explanation:

Cos^8x+sin^8x-1=0

sin^8x+cos^8x+2sin^4xcos^4x-2sin^4xcos^4x=1

Adding and subtracting 2sin^4xcos^4x

(sin^4x)^2+(cos^4x)^2+2sin^4xcos^4x-2sin^4xcos^4x=1

(sin^4x+cos^4x)^2-2sin^4xcos^4x=1

Using identity :(a+b)^2=a^2+b^2+2ab

((sin^2x)^2+(cos^2x)^2+2sin^2xcos^2x-2sin^2xcos^2)^2-2sin^4xcos^4x=1

((sin^2x+cos^2x)^2-2sin^2xcos^2)^2-2sin^4xcos^4x=1

(1-2sin^2xcos^2x)^2-2sin^4xcos^4x=1

1+4sin^4xcos^4x-4sin^2xcos^2x-2sin^4xcos^4x=1

2sin^4xcos^4x-4sin^2xcos^2x=1-1=0

2(sin^2xcos^2x)^2-4sin^2xcos^2x=0

It is quadratic equation in sin^2xcos^2x

Quadratic formula  for quadratic equationax^2+bx+c=0

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

Where a=Coefficient of x square

b=Coefficient of x

c=Constant term

Using quadratic formula  

sin^2xcos^2x=\frac{4\pm\sqrt{(-4)^2-4(2)(0)}}{2(2)}

sin^2xcos^2=\frac{4\pm\sqrt{16}}{4}=\frac{4\pm 4}{4}

sin^2xcos^2x=\frac{4+4}{4}=\frac{8}{4}=2

sin^2xcos^2x=\frac{4-4}{4}=0

Hence, the value of cos^2xsin^2x are 0 and 2.

#Learns more:

https://brainly.in/question/5054170

Similar questions