Math, asked by chayalakshmisripitha, 19 days ago

if sin(90-A)= 1/2 then find the value of tan A + cot A​

Answers

Answered by anushkamowade
2

Step-by-step explanation:

sin(90-A)= cot A

Therefore, cot A = 1/2

cot 60= 1/2

Therefore , A= 60

Now,

tan A+ cot A= tan 60 + cot 60

= √3 + 1/√3

= 3+1/√3

= 4/√3

= 4√3 / 3

Hope it helps....

pls mark me as the brainliest

Answered by vishalns1994
0

Answer:

The value of tan A + cot A​ = 4/\sqrt{3}

Step-by-step explanation:

Given : Sin (90-A) = 1/2

            tan A + Cot A = ?

Solution : Sin(90-A) = Cos A = 1/2 ---------1

                Sin²A+Cos²A = 1

                Sin²A = 1- Cos²A -----------2

            Substituting 1 in 2, we get

               Sin²A = 1- 1/2 x 1/2

                         = 1 - 1/4

                          = 3/4

          ∴ SinA = \sqrt{3}/2 --------------3

tanA + CotA = SinA/CosA + CosA/SinA ----------------4

Substituting 1 & 3 in 4, we get

tanA + cotA =  \sqrt{3}/2/1/2 + 1/2/ \sqrt{3}/2

                     = \sqrt{3} + 1/\sqrt{3}  

                    = (3+1)/\sqrt{3}

                    = 4/\sqrt{3}

Similar questions