if sin A = √3/2 find the value of 2 cot²A -1
Answers
Answered by
7
_______________________
Given , sinA = √3 / 2
To find the value of : 2 cot²A - 1 ----- ( i )
Now ,
cosA = √ ( 1 - sin²A )
[ • sin²A + cos²A = 1 → Using this identity ]
cosA = √ { 1 - ( √3 / 2 )² } [ • Putting the value of sinA ]
cosA = √ ( 1 - 3 / 4 )
cosA = √ { ( 4 - 3 ) / 4 }
cosA = √ ( 1 / 4 )
cosA = 1 / 2
We know ,
cotA = cosA / sinA
cotA = ( 1 / 2 ) / ( √3 / 2 ) [ • Putting the values of sinA and cosA ]
cotA = ( 1 / 2 ) × ( 2 / √3 )
cotA = 1 / √3
Now putting the value of cotA in equation--( i )
• 2 cot²A - 1
= 2 × ( 1 / √3 )² - 1
= 2 × 1 / 3 - 1
= ( 2 / 3 ) - 1
= ( 2 - 3 ) / 3
= - 1 / 3 [ ★ Required answer ]
●▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬●
namishm:
thanks man
Similar questions