Math, asked by 5834Subham, 1 year ago

If sin A =3/4, calculate cos A and tan A.

Answers

Answered by 99EkanshNimbalkar
3
SOLUTION
Let ΔABC be a right-angled triangle, right-angled at B. We know that sin A = BC/AC = 3/4 Let BC be 3k and AC will be 4k where k is a positive real number. By Pythagoras theorem we get, AC2 = AB2 + BC2 (4k)2 = AB2 + (3k)2 16k2 - 9k2 = AB2 AB2 = 7k2 AB = √7 k cos A = AB/AC = √7 k/4k = √7/4 tan A = BC/AB = 3k/√7 k = 3/√7

Answered by Disha976
3

Given that,

  •  \rm { sin \: A = \dfrac{3}{4} }

We have to find,

  •  \rm { cos \: A \: and \: tan \: A }

Solution,

Here, we know that

 \rm { sin \: A =\dfrac{ 3}{4} = \dfrac{ Perpendicular}{Hypotenuse} }

Hence,

  •  \rm { Perpendicular = 3}
  •  \rm { Hypotenuse = 4}

_____________

Applying pythagoras property-

 \rm\red { {H}^{2} = {B}^{2} + {P}^{2} }

 \rm { \leadsto {B}^{2} = {H}^{2} - {P}^{2} }

 \rm { \leadsto {B}^{2} = {4}^{2} - {3}^{2} }

 \rm { \leadsto {B}^{2} = 16 - 9 = 7}

 \rm\blue { \leadsto B = \sqrt{7} }

________________

  •  \rm { Hypotenuse = 4 }
  •  \rm { Base =  \sqrt{7}  }
  •  \rm { Perpendicular = 3 }

 \leadsto \rm\red{ cos \: A = \dfrac{ Base}{ Hypotenuse} = \dfrac{ \sqrt{7} }{4} }

 \:

 \leadsto \rm\red{ tan \: A = \dfrac{ Perpendicular}{ Base} =  \dfrac{ 3 }{\sqrt{7}} }

Similar questions