Math, asked by unknownsoul276, 8 months ago

If sin A = 3/4, calculate cos A and tan A..​

Answers

Answered by hchandra5205
2

sin A = 3/4 = Perpendicular/Hypotenuse

Let Base be B, Perpendicular be P and hypotenuse be H

Using Pythagoras Theorem,

H^2 = B^2 + P^2

4^2 = B^2 + 3^2

16 = B^2 + 9

B^2 = 16-9

B = √ 7

cos A = B/H = √7/4

tan A = P/B = 3/√7

Answered by Disha976
5

Given that,

  •  \rm { sin \: A = \dfrac{3}{4} }

We have to find,

  •  \rm { cos \: A \: and \: tan \: A }

Solution,

Here, we know that

 \rm { sin \: A =\dfrac{ 3}{4} = \dfrac{ Perpendicular}{Hypotenuse} }

Hence,

  •  \rm { Perpendicular = 3}
  •  \rm { Hypotenuse = 4}

_____________

Applying pythagoras property-

 \rm\red { {H}^{2} = {B}^{2} + {P}^{2} }

 \rm { \leadsto {B}^{2} = {H}^{2} - {P}^{2} }

 \rm { \leadsto {B}^{2} = {4}^{2} - {3}^{2} }

 \rm { \leadsto {B}^{2} = 16 - 9 = 7}

 \rm\blue { \leadsto B = \sqrt{7} }

________________

  •  \rm { Hypotenuse = 4 }
  •  \rm { Base =  \sqrt{7}  }
  •  \rm { Perpendicular = 3 }

 \leadsto \rm\red{ cos \: A = \dfrac{ Base}{ Hypotenuse} = \dfrac{ \sqrt{7} }{4} }

 \:

 \leadsto \rm\red{ tan \: A = \dfrac{ Perpendicular}{ Base} =  \dfrac{ 3 }{\sqrt{7}} }

Similar questions