Math, asked by rajesh465, 4 months ago

if sin A=3/4,find the value of 2+2 tan^2 A.
unwanted ans will be reported

Answers

Answered by tgtmath19
3

Step-by-step explanation:

given sinA= 3/4

then CosA =root7/4

cos^2=7/16

sec^2A=16/7

2(1+tan^2A)

=2sec^2A

=2*16/7

=32/7

Answered by MagicalBeast
6

Given :

sinA = (3/4)

To find :

Value of , 2 + 2 tan²A

Identity used :

\sf \bullet \:  \:  \cos(x)  =  \sqrt{1 -  { \sin(x) }^{2} }  \\  \\ \sf \bullet \:  \:  \tan(x)  \:  =  \:  \dfrac{ \sin(x) }{ \cos(x) }

Solution :

First of all we need to find cosA

\sf \implies \:  \cos(A)  \:  =  \:  \sqrt{ \: 1 -  { \sin(A) }^{2} }  \\  \\ \sf \implies \:  \cos(A)  \:  =  \sqrt{ \: 1  \: -  \:   { \bigg \{ \dfrac{3}{4} \bigg \} }^{2}  }  \\  \\ \sf \implies \:  \cos(A)  \:  =  \:  \sqrt{ \: 1 -  \dfrac{9}{16} }  \\  \\ \sf \implies \:  \cos(A)  \:  =  \:    \sqrt{ \dfrac{(1 \times 16) - (9 \times 1)}{16} }  \\  \\ \sf \implies \:  \cos(A)  \:  =  \:  \sqrt{ \dfrac{16 - 9}{16} }  \\  \\  \sf \implies \:  \cos(A)  \:  =  \:   \sqrt{ \dfrac{7}{16} }  \\  \\  \sf \implies \:  \cos(A)  \:  =  \:   \dfrac{ \sqrt{7} }{4}

Now we need to find tan A

\sf \implies \:   \:  \tan(A)  \: =  \:  \dfrac{ \sin(A) }{ \cos( A ) }  \\   \\\sf \implies \:   \:  \tan(A)  \: = \:   \dfrac{ \dfrac{3}{4} }{ \dfrac{ \sqrt{7} }{4} }  \\   \\ \sf \implies \:   \:  \tan(A)  \: = \:  \dfrac{3}{4}  \times  \dfrac{4}{ \sqrt{7} }  \\  \\ \sf \implies \:   \:  \tan(A) \:  = \:  \dfrac{3}{ \sqrt{7} }

Now value of 2 + 2 tan²A =

\sf \implies \: 2 \:  +  \: 2 \times  { \bigg \{ \dfrac{3}{ \sqrt{7} } \bigg \} }^{2}  \\  \\ \sf \implies \: 2 \:  + \:  2 \times  \dfrac{9}{7}  \\  \\ \sf \implies \: 2 \:  +  \:  \dfrac{18}{7}  \\  \\ \sf \implies \:  \dfrac{(2 \times \: 7 ) + (18 \times 1)}{7}  \\  \\ \sf \implies \:  \dfrac{14 + 18}{7}  \\  \\ \sf \implies \:  \dfrac{32}{7}

ANSWER :

2 + 2 tan²A = 32/7

Similar questions