Math, asked by jeetalgotar, 10 months ago

If sin A = √3, then tan A is _,​

Answers

Answered by Rudra0936
4

Given sin A = √3

So we can write sinA as

sin \: a =  \frac{perpendicular \: }{hypotenus}

So in the attachment given A right triangle ∆ PQA

with angle R= theta

Now,

 =  > sin \: a =  \frac{perpendicular}{hypotenus}

 =  > sin \: a \:  =  \frac{pq}{pa}

 =  >  \: sin \:a =  \sqrt{3}   \\  \\  =  >  \:  \frac{pq}{pa}  =  \sqrt{3} \\  \\  =  > pq =  \sqrt{3} and \: qa = 1

So now by applying Pythagoras formula we can find the base of the ∆✓

Which is as follows:

.

 =  > qa =  \sqrt{pq ^{2} - pa ^{2}  }

 =  > qa =  \sqrt{ (\sqrt{3} ) ^{2} - 1 ^{2}  }

 =  > qa =  \sqrt{3 - 1}  \\  \\  =  > qa =  \sqrt{2}

So we know that

.

tan \: a =  \frac{perpendicular}{base}

 =  > tan \: a =  \frac{ \sqrt{3} }{ \sqrt{2} } \\  \\  =  > tan \: a =  \frac{ \sqrt{3}  \times  \sqrt{3} }{ \sqrt{2} \times  \sqrt{2}  } ......(rationalising) \\  \\  =  > tan \: a =  \frac{6}{2}   = 3

Therefore the value of tanA= 3

.

.

.

Attachments:
Answered by Anonymous
1

sin theta + cos theta = √3

( sin theta + cos theta )^ 2 = (√3 ) ^2

sin^2 theta + cos^2 theta +2sin theta. cos theta = 3

1 + 2 sin theta . cos theta = 3

2 sin theta . cos theta = 2

sin theta . cos theta = 1

sin theta . cos theta = sin^2 theta + cos^2 theta

( 1 = sin^2 theta + cos^2 theta

sin theta . cos theta / sin theta . cos theta

= sin^2 theta + cos^2 theta / sin theta . cos theta

1 = tan theta + cot theta

Similar questions