Math, asked by unknown785, 11 months ago

If Sin (A+B) = 1 and cos(A-B) = √3/2
0 < A+B < 90° A>B then find
A and B.
20​

Answers

Answered by Utkarshkesharwani933
2

Answer:

Hope this answer helps you

Follow me

Mark as brainlist

Attachments:
Answered by abdul9838
1

 &lt;b&gt; &lt;body \: bgcolor = "yellow"&gt;

 \bf \red{hey \: mate \: here \: is \: answer} \\  \\  \bf \blue{ \huge \: solution} \\  \\  \bf \pink{as \: given} \\  \\  \bf \pink{ \sin(A+B) = 1 } \\  \\  \bf \red{and} \\  \\  \bf \pink{ \cos(A - B)  =  \frac{ \sqrt{3} }{2} } \\  \\  \bf \green{ \huge \: now} \\  \\  \bf \pink{ \sin(A+B)  = 1} \\  \\  \bf \pink{ =  &gt;  \sin(A+B)  =  \sin(90) \degree } \\  \\  \bf \pink{A+B = 90 \degree \: ........... \: equation \: 1st} \\  \\  \bf \green{and} \\  \\  \bf \pink{ \cos(A - B) =  \frac{ \sqrt{3} }{2}  } \\  \\  \bf \pink{ \cos(A - B) =  \cos(30) \degree } \\  \\  \bf \pink{A - B = 30 \degree \:  \: ..........equation \: 2nd} \\  \\  \\  \bf \orange{adding \: both \: equations} \\  \\  \bf \pink{ A+ \cancel{B }= 90 \degree } \\  \bf \pink{A  \cancel{ - B }= 30 \degree} \\  \\    \bf \pink{ =  &gt; 2A = 120 \degree} \\  \\  \bf \pink{ =  &gt; A =  \frac{ \cancel{120}}{ \cancel{2} }} \\  \\  \bf \pink{ =  &gt;A = 60 \degree } \\  \\  \bf \red{now} \\  \\  \bf \green{putting \: the \: value \: of \: A \: in \: equation \: 1st} \\   \\  \bf \pink{A+B = 90 \degree} \\  \\  \bf \pink{B = 90 \degree - A} \\  \\  \bf \pink{ =  &gt;B = 90 \degree - 60 \degree } \\  \\  \bf \pink{B = 30 \degree \:  \: answer}

Similar questions