If sin(A+B)=1 and cos (A-B)=√3/2 , then find A and B.
Answers
Answered by
7
sin(A+B) = 1
A+B = sin inverse of 1
A+B = π/2
cos(A-B) = √3/2
A-B = cos inverse of √3/2
A-B = π/6
A+B+A-B = π/2 + π/6
2A = 4π/6
⇒A = π/3
A+B-A+B = π/2 - π/6
2B = π/3
⇒B = π/6
A+B = sin inverse of 1
A+B = π/2
cos(A-B) = √3/2
A-B = cos inverse of √3/2
A-B = π/6
A+B+A-B = π/2 + π/6
2A = 4π/6
⇒A = π/3
A+B-A+B = π/2 - π/6
2B = π/3
⇒B = π/6
kvnmurty:
there are 4 sets of answers.
Answered by
9
Let us look at angles from 0 to 360 or 2π degrees.
sin (A+B) = 1 => A+B = 90 deg or 2nπ + 90 or 360+90 = 450
Cos (A-B) = √3/2 => A - B = 30 or 330 (-30 deg) or 2nπ +- 30
Let A+B = 90 A-B = 30 => A = 60 B=30
Let A+B = 90 A-B = 330 => A = 210 B = -120, same as, 240 deg
Let A+B = 450 A-B = 30 => A = 240 B = 210
Let A+B = 450 A-B = 330 => A = 390 or 30 B = 60
sin (A+B) = 1 => A+B = 90 deg or 2nπ + 90 or 360+90 = 450
Cos (A-B) = √3/2 => A - B = 30 or 330 (-30 deg) or 2nπ +- 30
Let A+B = 90 A-B = 30 => A = 60 B=30
Let A+B = 90 A-B = 330 => A = 210 B = -120, same as, 240 deg
Let A+B = 450 A-B = 30 => A = 240 B = 210
Let A+B = 450 A-B = 330 => A = 390 or 30 B = 60
Similar questions