Math, asked by siddabattulasrinu3, 13 days ago

. If sin(a+B) = 1, sin(s–b) =1/2, a,b€[0,π/2] then find the value of tan(a +2B). tan (2a +B). 2​

Attachments:

Answers

Answered by TrustedAnswerer19
21

Given,

 \blue{ { \:{ \boxed{\boxed{\begin{array}{cc}  \rm \: sin( \alpha   + \beta ) = 1 \\  \\  \rm  \: \implies\: sin(\alpha   + \beta)  =sin {90}^{ \circ}  \\  \\  \rm  \implies\: \alpha  +  \beta =  {90}^{ \circ}    \:  \:  \:  \:  -  -  -  - (1)\end{array}}}}   }}

and

\pink{ \boxed{\boxed{\begin{array}{cc} \rm \: sin( \alpha  -  \beta  ) =  \frac{1}{2} \\  \\  \rm  \implies\:sin( \alpha   -  \beta ) = sin {30}^{ \circ} \\  \\  \rm  \implies\: \alpha   - \beta   =  {30}^{ \circ} \:  \:  \:  \:  -  -  -  - (2)  \end{array}}}}

where,

 \alpha , \beta \:  \in [0, \frac{\pi}{2} ]

Now,

 \orange{ \boxed{\boxed{\begin{array}{cc} \sf \: eqn(1) + eqn(2) \implies \\  \\  \rm \:  \alpha   + \beta  = 90 \\  \alpha  -  \beta  = 30  \\ \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \rm \: 2 \alpha  = 90 + 30 = 120 \\  \\   \boxed{\rm \therefore \:  \alpha  =  {60}^{ \circ}}  \\  \\  \sf \: put \: this \: value \: in \: eqn(1) \\  \\  \rm \: 60 +  \beta  = 90 \\  \\ \boxed{   \rm \therefore \:  \beta  =  {30}^{ \circ}}  \end{array}}}}

Now, value of the following :

\pink{ \boxed{\boxed{\begin{array}{cc}  \rm \: tan( \alpha  + 2 \beta ).tan(2 \alpha  +  \beta ) \\  \\  =  \rm \: tan(60 + 2 \times 30).tan(2 \times 60 + 30) \\  \\  =  \rm \: tan120.tan150 \\  \\  =  \rm \: tan(90 + 30).tan(90 + 60) \\  \\  =  \rm \: cot30.cot60 \\  \\  =  \sqrt{3} \times \frac{1}{ \sqrt{3} }  \\  \\  = 1 \end{array}}}}

Similar questions