Math, asked by Murugan111, 1 year ago

If sin(a+b)=√3/2 and cos(a-b)=√3/2 then find a and b.

Answers

Answered by Manojchowdary1
47
hope this will be useful to you
Attachments:
Answered by smithasijotsl
0

Answer:

a = 45 and b = 15

Step-by-step explanation:

Given,

sin(a+b) =  \frac{\sqrt{3} }{2}

cos(a-b) =  \frac{\sqrt{3} }{2}

To find,

The value of 'a' and 'b'

Solution:

Recall the concepts

sin 60 =  \frac{\sqrt{3} }{2} and cos 30=  \frac{\sqrt{3} }{2}

Sin(a+b)  =  \frac{\sqrt{3} }{2}  = sin 60

a+b = 60---------------(1)

cos(a-b) =  \frac{\sqrt{3} }{2} = cos 30

a-b = 30 ---------------(2)

adding (1) and(2) we get

2a = 90

a = 45

Substitute the value of 'a' in equation (1) we get

45 +b = 60

b = 15

∴a = 45 and b = 15

#SPJ3

Similar questions