If sin(a+b) /cos(a-b) =1-x/1+x then show that tan(tan45-a) (tan45-b) =x
Answers
Answer:
If sin(a+b) /cos(a-b) =1-x/1+x then (tan45-a) (tan45-b) =x
Step-by-step explanation:
Sin(a+b)/Cos(a-b) = (1-x)/ (1+x)
Tan(45-a) . Tan(45-b) = x
Tan (45-a) = (Tan 45 - Tan a)/(1 + Tan 45. Tan a ) = (1 - Tan a)/(1 + Tan a)
= ( 1- Sin a /Cos a) / ( 1 + Sin a / Cos a) = (Cos a - Sin a) / (Cos a + Sin a)
Similarly Tan (45-b) = (Cos b - Sin b) / (Cos b + Sin b)
=> x = ((Cos a - Sin a) / (Cos a + Sin a))((Cos b - Sin b) / (Cos b + Sin b))
=> x = ((cos a cos b + Sin a Sin b) - (Sin a Cos b + cos a Sin b) ) / ((cos a cos b + Sin a Sin b) + (Sin a Cos b + cos a Sin b) )
Using Cos(a-b) = Cos a Cos b + Sin a Sin b
Sin(a +b) = Sin a Cos b + Cos a Sin b
=> x = (Cos (a-b) - Sin(a+b) )/ (Cos (a-b) + Sin(a+b))
1-x = 2Sin(a+b) /(Cos (a-b) + Sin(a+b))
1 + x = 2 Cos(a+b) /(Cos (a-b) + Sin(a+b))
using above two
1-x/(1+x) = Sin(a+b)/Cos(a-b)