Math, asked by jainhgmailcom1856, 9 months ago

If sin =a/b show that sec+tan =whole root b+a/b-a

Answers

Answered by ThinkingBoy
0

Given:

Sin\theta = \frac{a}{b}

a = bSin\theta

a^2 = b^2(1-cos^2\theta)

Cos^2\theta = \frac{b^2-a^2}{b^2}

Cos\theta = \frac{\sqrt{b^2-a^2} }{b}

Hence,

Sec\theta = \frac{1}{Cos\theta} = \frac{b}{\sqrt{b^2-a^2} }

Tan\theta = Sin\theta Sec\theta = \frac{a}{\sqrt{b^2-a^2} }

Sec\theta+Tan\theta = \frac{1}{\sqrt{b^2-a^2} }(b+a)

Sec\theta+Tan\theta = \sqrt{\frac{(b+a)^2}{(b+a)(b-a)} }

Sec\theta+Tan\theta = \sqrt{\frac{(b+a)}{(b-a)} }

Hence Proved

Similar questions