if sin(a+b)=sin A cos B +cos A sin B,find the value of sin(60+45)
Answers
Answered by
4
Given :
sin(A+B)=sin A cos B +cos A sin B
To find :
sin(60°+45°)
Solution :
⟹ sin(A+B)=sin A cos B +cos A sin B
Now put :-
- A = 60°
- B = 45°
⟹ sin(60°+45°)=sin 60° cos45° +cos60° sin 45°
We know that :-
⟹ sin(60°+45°)=(√3/2) (1/√2)+(1/2) (1/√2)
⟹ sin(60°+45°)=(√3/2√2) + (1/2√2)
⟹ sin(60°+45°)=(√3+1)/ (2√2)
Answer :
____________________
Learn more :-
1. Cosθ = base / hypotenuse
2. cossecθ = 1/ sinθ
3. sec θ = 1/cosθ
4. Cotθ = 1/ tanθ
5. Sin²θ+ Cos²θ= 1
6. Sec²θ - tan²θ = 1
7. cosec ²θ - cot²θ = 1
8. sin(90°−θ) = cos θ
9. cos(90°−θ) = sin θ
10. tan(90°−θ) = cot θ
11. cot(90°−θ) = tan θ
12. sec(90°−θ) = cosec θ
13. cosec(90°−θ) = sec θ
14. Sin2θ = 2 sinθ cosθ
15. cos2θ = Cos²θ- Sin²θ
Answered by
1
Answer:
(√3+1)/2√2
Step-by-step explanation:
sin(A+B)=sinA.cosB+cosA.sinB
sin(60+45)=sin60.cos45+cos60.sin45
(√3/2).(1/√2)+(1/2).(1/√2)
=(√3/2√2)+(1/2√2)
=(√3+1)/2√2
Similar questions