Math, asked by devrathore96800, 10 months ago

If sin (A-B)=sin A cos B-Oos Asin B and cos (A-B) = cos Acos B + sin Asin B, find the
values of sin 15 and cos 15°.

Help me​

Answers

Answered by ihrishi
5

Step-by-step explanation:

sin \: 15 \degree  = sin \: (45 \degree - 30 \degree) \\  = sin \: 45 \degree \: cos 30 \degree  - cos \: 45 \degree \: sin 30 \degree \\  =  \frac{1} { \sqrt{2} }  \times  \frac{ \sqrt{3} }{2}  -  \frac{1} { \sqrt{2} }  \times  \frac{1}{2} \\  = \frac{ \sqrt{3} }{2 \sqrt{2} }   -  \frac{1 }{2 \sqrt{2} } \\  =  \frac{ \sqrt{ 3}  - 1}{2 \sqrt{2} }  \\ thus \\ \huge  \red{\boxed{ sin \: 15 \degree  =\frac{ \sqrt { 3}  - 1}{2 \sqrt{2} }  }} \\  \\ cos \: 15 \degree  = cos \: (45 \degree - 30 \degree) \\  = cos \: 45 \degree \: cos 30 \degree   + sin \: 45 \degree \: sin 30 \degree \\  =  \frac{1} { \sqrt{2} }  \times  \frac{ \sqrt{3} }{2}   +   \frac{1} { \sqrt{2} }  \times  \frac{1}{2} \\  = \frac{ \sqrt{3} }{2 \sqrt{2} }    +   \frac{1 }{2 \sqrt{2} } \\  =  \frac{ \sqrt{ 3}   + 1}{2 \sqrt{2} }  \\ thus \\ \huge  \purple{\boxed{ cos \: 15 \degree  =\frac{ \sqrt { 3}   +  1}{2 \sqrt{2} }  }}

Similar questions