If sin (A+B) = Sin A CosB + Cos A SinB and Cos (A-B) = Cos ACosB + SinA SinB then find the values of i) Sin 120 ii) Cos 15
Answers
Answered by
2
we have to find the value of
sin 15° and cos 15° = ?
solution:-
we know that
sin(A-B)=sinAcosB-cosAsinB
and
cos(A-B)=cosAcosB+sinAsinB
now,
(1) sin 15° = sin ( 45° - 30°)
= sin 45°cos 30° - cos 45° sin 30°
=1/√2 × √3/2 - 1/√2 × 1/2
= √3 / 2√2 - 1 / 2√2
= ( √3 - 1) / 2√2 answer
(2) cos 15° = cos(45° - 30°)
= cos 45° cos 30° + sin 45° sin 30°
= 1 / 2√2 × √3 / 2 + 1 / √2 × 1 / 2
= √3 / 2√2 + 1 / 2√2
= ( √3 + 1) / 2√2 answer
✰✰ hope it helps ✰✰
Answered by
3
Given:
"sin (A-B) = sinA cosB - cosA sinB"
"cos (A-B) = cosA cosB + sinA sin B"
To find:
The value of
Answer:
Given that
Sin (A-B) =SinA CosB - CosA SinB
Cos (A-B) =CosA CosB + SinA SinB
We need to find the
and
refer attachment for method
please mark me as brainlist
Attachments:
Similar questions