Math, asked by madhushree8, 9 months ago

If sin(A-B) =sinA CosB - CosA SinB, find the value of sin 15°​

Answers

Answered by BrainlyIAS
5

( √3 - 1 ) / 2√2

__________________________

\orange{\bigstar}  Given  \green{\bigstar}

sin(A-B) = sinA cosB - cosA sinB

\orange{\bigstar}  To Find  \green{\bigstar}

Value of sin 15°

\orange{\bigstar}  Solution  \green{\bigstar}

15 can be written as ( 60 - 45 )

\to \bf sin(15)\\\\\to \rm sin(60-45)\\\\\to \rm sin(60).cos(45)-cos(60).sin(45)\\\\ \to \rm \dfrac{\sqrt{3}}{2}.\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}.\dfrac{1}{\sqrt{2}}\\\\\to \rm \dfrac{\sqrt{3}}{2\sqrt{2}}-\dfrac{1}{2\sqrt{2}}\\\\\to \bf \dfrac{\sqrt{3}-1}{2\sqrt{2}}

So ,

\bf \sin15^{\circ}=\dfrac{\sqrt{3}-1}{2\sqrt{2}}\ \; \pink{\bigstar}

\orange{\bigstar}  Trigonometric Value's  \green{\bigstar}

\bullet\ \; \rm sin\ 45=\dfrac{1}{\sqrt{2}}\\\\\bullet\ \; \rm sin\ 60=\dfrac{\sqrt{3}}{2}\\\\\bullet\ \; \rm cos\ 45=\dfrac{1}{\sqrt{2}}\\\\\bullet\ \; \rm cos\ 60=\dfrac{1}{2}

__________________________

Similar questions