Math, asked by ishaana, 1 year ago

if sin a +cos a=p, sec a+cosec a=q then show that
q(p2-1)=2p

Answers

Answered by thinkdifferent
42
P= sina + cosa => p^2 = (sina +cosa)^2= sin^2 a + cos^2 a + 2sinacosa = 1+ 2sinacosa now p^2-1= 2sinacosa now q(p^2-1) = (seca + coseca)2sinacosa = [1/cosa + 1/sina ] 2sinacosa = (sina + cosa)2 =2(sina+ cosa) = 2 p = RHS proved
Answered by Anonymous
33

Answer:


Step-by-step explanation:

Cosec A + Cot A = P


= 1/Sin A + Cos A / Sin A = P


= 1+Cos A/Sin A = p


=> SQUARING ON BOTH SIDES


= (1+COS A)²/(SINA)²= P²


= (1+ Cos A)² / (Sin A)² = P²


= (1+cos A)² = (p²)[(Sin A)²]


= (1+ cos A) ² = (p²) [(1-cos²A)]


= (1+ cos A) ² = (p²) [ (1+cosA)(1-cos A) ]


= (1+cos A)² ÷ (1+ cos A) = (p²)[(1-cos A)]


= 1+cos A = (p²)[1-cos A]


= 1+cos A ÷ 1-cos A = p²


= Here, Using (a+b/a-b=c+d/c-d). This is known as Componendo and dividendo


According to the Question statement!



1+cos A ÷ 1-cos A = p²


Then,


(1+cos A) + (1 - cos A ) ÷ (1+ Sin A - (1-sin A) = p²+1 / p²-1


= 2/2cos = p²+1/p²-1


= 1/cos = p²+1/p²-1


= Sec = p²+1 /p²-1


We know that Cos A = 1/sec A


Then,


Cos A = p²-1 /p²+1

Similar questions